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Inequalities of Nikolskii (Trudy Mat. Inst. Steklova 38 (1951), 2.3, p. 255) in L{,,
p>=1, and of Oswald (Izv. Vyssh. Uchebn. Zaved. Mat. 7 (1976), (3.4), p. 71;
Theorem 1, p. 69), 0 < p <1, are extended to the case of Orlicz spaces Lg,. @© 1987

Academic Press, Inc.

Let ¢:{0,2n)x R, - R, be a function of class & (see [3,7.1]),
generating the generalized Orlicz space L%, and convex with respect to the
second variable and let us extend ¢ to Rx R, 2m-periodically. The
function ¢ is said to satisfy the condition (A), if there is a set 4°c R,
mes A°=0, and numbers ¢>0, M>0 and a measurable function
Fi i (R\A°)x (R\A°) > R, such that ¢(x, u)< (1, cu)+ F,(t, x) for all
u=0, t, xe R\A°, and [[, F,(t, x) dt dx < M mes Q for every square Q in
<0, 2n) x 0, 2n>. The function ¢ is said to satisfy the condition (B, ) with
an >0, if there exist a set 4 = (0, 2n >, mes A =0, a constant ¢ >0, and a
nonnegative, 2n-periodic, measurable function F(-, #) on R for |h| <1,
satisfying the inequality S, = supthlg,,j(z)" F(t,h)dt< oo such that
o(t—h u)< oL, cu)+ F(t, h) for u=0, te<0,2n>\A (see [1]). It is easily
seen that if ¢ satisfies B,, then it satisfies also (B,) for any # > n with the
same set 4, constant ¢ and S, = S,. Obviously, if ¢(z, ) is independent of
the parameter ¢, it satisfies both (A) and (B,) for all > 0.

2

The following notation will be adopted. Taking a positive integer N fixed
and x;=2njN "' for j=0, 1,.., N—1, we write for any N-dimensional real
VeCtor U="0g,..., On_ >

Nt oy,
pME) =Y [ ol 1v)) ar
J=0 "%
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This is a convex modular in RY, and the Luxemburg norm | Il
generated by this modular ([3, 1.5]) will be further denoted by | M‘”‘
Let T, be a trigonometric polynomial of degree <n, and let LER\
T, 0= (T, (vg),. T,{vy ). Thus, p'(T,5) defines a convex pseudo-
modular in the space H, of all trigonometric polynomials of degree <,
generating a pseudonorm |7, 5|V, ¢ being fixed. We define in H, also
another convex modular

T,)=sup Z J o1, | T (x+x)|) d,
A e VIR

defining in H, the Luxemburg norm | ||} =1 |I,.4.

3

The purpose of the first part of this note is to estimate the pseudonorm
I T, %[} with ¥=x,.,xy , and the norm [T,[}, by means of the
Luxemburg norm |T,], of T, in the generalized Orlicz space L¢,
generated by the modular p(f) = 3" @(1, | f(D)]) dt

LeMMa 1. Let ¢ be a convex function of the class @, satisfying (A) and
(B,), and let T,€ H,. Then there holds

IT, %Y < (L4 2maN 'COIT, | ,» (1)
where C,;=2ccmax(l, S,+2aM). In case of ¢(t, u) independent of the

parameter t,
[T,V < (142N DT, (2)

Proof. Let #n,e{x;,x;.,» be chosen so that |T,(n,)|=
mln\,\,< Xj i I t)|9 ﬁ:’/IO’j“ﬂ r’N— I Then pg(u ‘1Tnﬁ)<p(p(u lTn) f()r
every u >0, Whence 1T, 7l < I T,ll,- Hence

H 7‘}1"“' ipN) < ” Tn’{’_ Tnﬁ“if;\/) + HT”}T]HE/;’V) < H Tn“{-_ Tnﬁ”:oN) + “Tn“w (3)

Let u>0 and d>1 be arbitrary. Then
T,5—T,i\ 15" oo 1o
(CO it AL gl t, - T,(s) ds; dt
P < dit ) d j;) J\/ ¢ uj\,, | T(s)| ds
Now, by Jensen’s inequality with a fixed ¢ and by condition (A), we obtain

1 pxva N rxa 2nc
- Xt < st a
oloa " imnah<s [ o {5 T s

X X

N X4l
+2—7; L/ F(s, 1) ds
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Now, under the assumption (B,) there holds the following Bernstein
inequality: pm(n”Tﬁ,)spw(cT,,)JrSn (see [1, Proposition 2]). Hence we

obtain easily
T,x—T,7n 2nec 1
wny(Zat = Tall T Z
(B o (T ) g
where C= 5,4+ 2aM. Now let d=max(1, C). Then

AT E—T,7\ 1 [2néc 1
(N) n h <_ T —.
Po < 2du > 2p(,,< Nu ")+2 (4)

From this inequality follows that if ¥ > 2n¢cnN ~, then the left-hand side
of the inequality (4) is < 1. Hence

N

1T, % = T,q1N < 4nccdnN =" | T,
From this and from (3) follows (1). If ¢ does not depend on ¢, we have
M=S,=0,c=¢=d=1, and we get (2).
THEOREM 1. Let ¢ be a convex function of the class ®, satisfying (A)
and (B,), and let T,e H,,. Then
IT, 15 <(1+2mmN~'C,) C, | T, (5)

where C, is the same as in Lemmal and C,=2cmax(l, S,) for S, >4,
Cy=c(1—S,)" " for 0<S<L In case of p(t, u) independent of t we have

IT, 05 <(1+42maN"") | T,],.

Proof. We apply Lemma 1 to S,(-)=T,(x+-) with fixed x, obtaining
IS, %IV < (1 +2nmN~'C,) [|S,|l,. However, due to the assumption (B,)
we have ||S,[|, < C,IIT,|, (see [2, Theorem 1]), whence

1S, 1Y < (1+27nN~"'Cy) Co T,

oS, ¥
(N) Ll <d<1 d< 1.
Po <(1+2nnN'cl)cz flTn||¢> < for 0<o<

Passing to the limit as 0 —» | and then taking supremum over x, we get

pM) ( IT” )< 1,
¢ (1+27II1N Cl)Cz ”Tn”q)

which yields (5). If ¢ does not depend on ¢, we see easily that we may take
Cl = C2 = 1.
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Let us remark that if ¢(z, u) 1s independent of f, then obviously
P T,)<pi(T,), whence |T,|,<IIT,|75. This gives

COROLLARY. [If @ is a convex @-function (see [ 3, 1.9]) independent of the
parameter and if T, € H,, then

1T, <IT 5 < +27aN =) | T,

all -

If o(u)=1u|?, p=1, the corollary gives exactly the Nikolskii inequalities
in case of one variable.

4

We shall now assume ¢ to be a concave g-function without parameter,
strongly s-convex with an se (0, 1), i.e., @(u) = @(u'"*) is a convex function.
Then for T,e H, we have

j=0

2 N—1
pYT) =T sup T o(T,(x+x)l);

by [IT,[7* we denote the respective s-homogeneous norm in H, (see [3,
1.57). Besides || {|}* we shall consider in H, also the s-homogeneous norm
|'II;, induced in H, by L¢ generated by ¢. The following is easily
calculated:

LEMMA 2. If § is a convex q-function and

sin(1/2) nt

KlJl(t) = <m

2
) for O0<t<2m,
then for every C >0,

[ BCK ) di<imuacn ) n

0

THEOREM 2. Let ¢ be a concave, strongly s-convex @-function without
parameter, 0 < s < 1, satisfying the condition (A4,): Y(u) =
Sup, - o @(uv)/@(v) < © for all u>0. Let §(u)=yu'> "), u=0, with an
integer r = (s + 2)/2s. Then for every T, € H

P (T)<pMT,)<2Y(1 4+ 270N ') p (T,),
[T < IT N <27 (1 + 2rnaN ~ Y || T, 12,
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Proof. The left-hand side inequalities follow as in the remark to
Theorem 1. To prove the right-hand ones, we denote ¢ = (2k + 1)n/2n for
k=0,1,.,2n—1. Then, applying Lemma2 from [5, 1.7, p.68], sub-
additivity of ¢ and the definition of i, we obtain

k=0

(2"1,1) anq (27 n)y | (2r—1)/2
z (T, NS X WK x,—1F7m) &1,

= j=0

Since r = (s + 2)/2s, so p=2/(2r — 1)< 1. Since ¢ is strongly s-convex, so is
; hence y is also strongly p-convex, whence i is convex. Moreover,

2n ! (2r=tn)y | (2r—1)/2 N
“]V z '//(|K1,n(x+x/_’k )| )SPJ(Kl,n)-
ji=0
Hence
2 N 2'n—1 2-n)
AT Z @ |Tn(x+x)|)<p.[(Kl,n) z (p(’Tn(tk )|)
/:0 k=0

for every x. Now, let "€ (x,, X; 41, be as in the proof of Lemma 1 and let
pM(7) be as in 2, with Y in place of ¢. Then p (T, 7)< py(T,). Hence

pPUT, %) < 3o (2T, % — 2T, 1) + 3p(2T,).

Calculating as in the proof of Lemma 1 with d=1 and u=4 and applying
Bernstein inequality, we obtain

pQ2T,x—2T,7)< pg(4nnN~'T,).
Hence
pUT, %) <3pg(4nnN ~'T,) + 3p;(2T,).

Applying this inequality to S,(-)= T,(x +-) with a fixed x, we obtain

e N2t
N Y VT, (x+x))) <lpg(dnnN ~'T,) + 3p5(2T,).
j=0
Taking supremum over all x, we get

pI(T,)<3pp(4nnN~'T,) + 3p4(2T,)
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for every T, e H,. Now, we apply this inequality to K, e H, in place of T,.
By Lemma 2 and superadditivity of iy, we thus obtain

) 3716 ~ {8 21 ~ 2
;)g(k’l_,l)s%n(w(W—g>+w<;)><§w<l+~gﬁ)-

Consequently,

. 2nn 2t ,
- Z o T, (x +x;)| —KP( ) Y (T (1F ™))
N/ 0 n N/ =

Taking supremum over all x, we obtain

- 2an\ 2n !
puT,)<2 w( N) L oUT

Writing S, ()=7,x+-) for an arbitrary x, we have obviously
pX(S,)=p)(T,). Hence, applying the above inequality to S, in place of T,,,
we get

, . - 2 2 T .
pUTI=pNS) <2 (14 —"1’->2,” L ol ™)

Integrating both sides over <0 27>, we obtain
2mpM(T,) <2 W(1 427N ') p,(T,),

which is the first of the required inequalities. The second inequality follows
casily from the first one.

Let us remark that taking ¢(u)=|u|”, 0< p< 1, Theorem 2 yields the
inequalities of Oswald [5, 3.4, p. 71].

5

THEOREM 3. Let ¢ be a concave, s-convex function (see [3, 1.9.17])
depending on the parameter, satisfying (B,) and the condition (4,):
W(t, u) =sup,.o oL, uv)/o(t,v)<oc for all u=0 and te{0,2n). Then
there exists a C >0 such that for every T, € H, there holds

[ T35, < Cn™ || T, I, for v=0,1,2,..
Proof. Obviously, it is sufficient to perform the proof for v=1. Since ¢

is s-convex, so are ¥ and Y(u)=supgy<, <2, ¥(L, u), Y(1)=1. Choosing a
fixed positive integer r such that 2rs > 1, we thus obtain

: 1 s
zv <2k+1)2'>< L e (©)

k=1
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Taking ¢} as in the proof of Theorem 2 and applying the inequality

2’n—1 2r

’ n r—1 . r— —2r
T, (0l < 2 WIE(X""? )|(sin § 1) 73
k=0

(see [S, p. 691]), subadditivity of ¢ and inequality (6) give for every >0,

1 S -
}T')\Z z ll] (W) pq,(/tzr +r ZnT,,(‘ + tg(z ”))). (7)

Now, by [2, Theorem 1], we have
1222707 3T (4 1), S €220 | T,
where C, is as in Theorem 1. Choosing
A= (2T (8)

the left-hand side of the last inequality becomes <1 and so, by (7), we
obtain

& 1
<2 —_—
kgo (2k+ 1)2r,s

If C, is the maximum of 1 and of the right-hand side of the last inequality,
we get p,(AT,)< Cy, C;2 1. By s- convcx1ty of 9, p,(AC5 '*T,) < 1. Hence
[T}, <A *Cy=Cn"|T,|3,, where C= 207 =250,

Let us remark that taking e@(u)=|ul{?, 0<p<1, we obtain the
Bernstein-type inequality of Oswald [5, 2.2, p. 70].

Theorems 2 and 3 may be applied to estimate the averaged moduli of
smoothness in L% by means of best one-sided approximations by
trigonometric polynomials in L§,
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