On Some Nikolskii- and Oswald-type Inequalities

HELENA MUSIELAK

Krasinskiego 8D, 60-830 Poznan, Poland Communicated by R. Bojanic

Received July 25, 1984

DEDICATED TO THE MEMORY OF GÉZA FREUD

Inequalities of Nikolskii (Trudy Mat. Inst. Steklova 38 (1951), 2.3, p. 255) in $L_{L\pi}^{\rho}$, $p \ge 1$, and of Oswald (Izv. Vyssh. Uchebn. Zaved. Mat. 7 (1976), (3.4), p. 71; Theorem 1, p. 69), $0 , are extended to the case of Orlicz spaces <math>L_{2\pi}^{\varphi}$. © 1987 Academic Press, Inc.

1

Let $\varphi: \langle 0, 2\pi \rangle \times R_+ \to R_+$ be a function of class Φ (see [3, 7.1]), generating the generalized Orlicz space $L^{\varphi}_{2\pi}$ and convex with respect to the second variable and let us extend φ to $R \times R_+$ 2 π -periodically. The function φ is said to satisfy the condition (A), if there is a set $A^0 \subset R$. mes $A^0 = 0$, and numbers $\bar{c} > 0$, M > 0 and a measurable function $F_1: (R \setminus A^0) \times (R \setminus A^0) \to R_+$ such that $\varphi(x, u) \leq \varphi(t, \bar{c}u) + F_1(t, x)$ for all $u \ge 0$, $t, x \in R \setminus A^0$, and $\iint_Q F_1(t, x) dt dx \le M \text{ mes } Q$ for every square Q in $\langle 0, 2\pi \rangle \times \langle 0, 2\pi \rangle$. The function φ is said to satisfy the condition (**B**_n) with an $\eta > 0$, if there exist a set $A \subset \langle 0, 2\pi \rangle$, mes A = 0, a constant c > 0, and a nonnegative, 2π -periodic, measurable function $F(\cdot, h)$ on R for $|h| \leq \eta$, inequality $S_n = \sup_{|h| \le n} \int_0^{2\pi} F(t, h) dt < \infty$ such satisfying the that $\varphi(t-h, u) \leq \varphi(t, cu) + F(t, h)$ for $u \geq 0, t \in \langle 0, 2\pi \rangle \setminus A$ (see [1]). It is easily seen that if φ satisfies B_{π} , then it satisfies also (\mathbf{B}_n) for any $\eta > \pi$ with the same set A, constant c and $S_n = S_n$. Obviously, if $\varphi(t, u)$ is independent of the parameter t, it satisfies both (A) and (B_n) for all $\eta > 0$.

2

The following notation will be adopted. Taking a positive integer N fixed and $x_j = 2\pi j N^{-1}$ for j = 0, 1, ..., N-1, we write for any N-dimensional real vector $\bar{v} = v_0, ..., v_{N-1}$,

$$\rho_{\varphi}^{(N)}(\bar{v}) = \sum_{j=0}^{N-1} \int_{x_j}^{x_{j+1}} \varphi(t, |v_j|) dt$$

0021-9045/87 \$3.00 Copyright © 1987 by Academic Press, Inc. All rights of reproduction in any form reserved. This is a convex modular in \mathbb{R}^N , and the Luxemburg norm $\|\|_{\varphi^{(N)}}$ generated by this modular ([3, 1.5]) will be further denoted by $\|\|_{\varphi^{(N)}}^{(N)}$. Let T_n be a trigonometric polynomial of degree $\leq n$, and let $\bar{v} \in \mathbb{R}^N$, $T_n \bar{v} = (T_n(v_0), ..., T_n(v_{N-1}))$. Thus, $\rho_{\varphi}^{(N)}(T_n \bar{v})$ defines a convex pseudomodular in the space H_n of all trigonometric polynomials of degree $\leq n$, generating a pseudonorm $\|T_n \bar{v}\|_{\varphi}^{(N)}$, \bar{v} being fixed. We define in H_n also another convex modular

$$\rho_{\varphi}^{N}(T_{n}) = \sup_{x} \sum_{j=0}^{N-1} \int_{x_{j}}^{x_{j+1}} \varphi(t, |T_{n}(x+x_{j})|) dt,$$

defining in H_n the Luxemburg norm $\| \|_{\varphi}^N = \| \|_{\rho_{\varphi}^N}$.

3

The purpose of the first part of this note is to estimate the pseudonorm $||T_n \bar{x}||_{\varphi}^{(N)}$ with $\bar{x} = x_0, ..., x_{N-1}$ and the norm $||T_n||_{\varphi}^N$, by means of the Luxemburg norm $||T_n||_{\varphi}$ of T_n in the generalized Orlicz space $L_{2\pi}^{\varphi}$, generated by the modular $\rho(f) = \int_0^{2\pi} \varphi(t, |f(t)|) dt$.

LEMMA 1. Let φ be a convex function of the class Φ , satisfying (A) and (\mathbf{B}_{π}), and let $T_n \in H_n$. Then there holds

$$\|T_n \bar{x}\|_{\varphi}^{(N)} \leq (1 + 2\pi n N^{-1} C_1) \|T_n\|_{\varphi}, \tag{1}$$

where $C_1 = 2\bar{c}c \max(1, S_{\pi} + 2\pi M)$. In case of $\varphi(t, u)$ independent of the parameter t,

$$\|T_n \bar{x}\|_{\varphi}^{(N)} \leq (1 + 2\pi n N^{-1}) \|T_n\|_{\varphi}.$$
 (2)

Proof. Let $\eta_j \in \langle x_j, x_{j+1} \rangle$ be chosen so that $|T_n(\eta_j)| = \min_{x_j \in I \leq x_{j+1}} |T_n(t)|, \quad \bar{\eta} = \eta_0, ..., \eta_{N-1}$. Then $\rho_{\varphi}^N(u^{-1}T_n\bar{\eta}) \leq \rho_{\varphi}(u^{-1}T_n)$ for every u > 0, whence $||T_n\bar{\eta}||_{\varphi}^{(N)} \leq ||T_n||_{\varphi}$. Hence

$$\|T_{n}\bar{x}\|_{\varphi}^{(N)} \leq \|T_{n}\bar{x} - T_{n}\bar{\eta}\|_{\varphi}^{(N)} + \|T_{n}\bar{\eta}\|_{\varphi}^{(N)} \leq \|T_{n}\bar{x} - T_{n}\bar{\eta}\|_{\varphi}^{(N)} + \|T_{n}\|_{\varphi}.$$
 (3)

Let u > 0 and $d \ge 1$ be arbitrary. Then

$$\rho_{\varphi}^{(N)}\left(\frac{T_n\bar{x}-T_n\bar{\eta}}{du}\right) \leqslant \frac{1}{d} \sum_{j=0}^{N-1} \int_{x_j}^{x_{j+1}} \varphi\left\{t, \frac{1}{u} \int_{x_j}^{x_{j+1}} |T'_n(s)| ds\right\} dt.$$

Now, by Jensen's inequality with a fixed t and by condition (A), we obtain

$$\varphi\left\{t, \frac{1}{u}\int_{x_{i}}^{x_{i+1}}|T'_{n}(s)|\ ds\right\} \leq \frac{N}{2\pi}\int_{x_{i}}^{x_{i+1}}\varphi\left\{s, \frac{2\pi\bar{c}}{Nu}|T'_{n}(s)|\right\}\ ds$$
$$+\frac{N}{2\pi}\int_{x_{i}}^{x_{i+1}}F(s, t)\ ds.$$

360

Now, under the assumption (B_{π}) there holds the following Bernstein inequality: $\rho_{\varphi}(n^{-1}T'_n) \leq \rho_{\varphi}(cT_n) + S_{\pi}$ (see [1, Proposition 2]). Hence we obtain easily

$$\rho_{\varphi}^{(N)}\left(\frac{T_n\bar{x}-T_n\,\bar{\eta}}{du}\right) \leqslant \rho_{\varphi}\left(\frac{2\pi\bar{c}c}{Nu}\,T_n\right) + \frac{1}{d}\,C,$$

where $C = S_{\pi} + 2\pi M$. Now let $d = \max(1, C)$. Then

$$\rho_{\varphi}^{(N)}\left(\frac{T_n\bar{x}-T_n\bar{\eta}}{2du}\right) \leq \frac{1}{2}\rho_{\varphi}\left(\frac{2\pi\bar{c}c}{Nu}T_n\right) + \frac{1}{2}.$$
(4)

From this inequality follows that if $u > 2\pi \bar{c} cn N^{-1}$, then the left-hand side of the inequality (4) is ≤ 1 . Hence

$$||T_n \bar{x} - T_n \bar{\eta}||_{\varphi}^{(N)} \leq 4\pi \bar{c} c dn N^{-1} ||T_n||_{\varphi}$$

From this and from (3) follows (1). If φ does not depend on *t*, we have $M = S_{\pi} = 0$, $c = \bar{c} = d = 1$, and we get (2).

THEOREM 1. Let φ be a convex function of the class Φ , satisfying (A) and (\mathbf{B}_{π}) , and let $T_n \in H_n$. Then

$$\|T_n\|_{\varphi}^N \leq (1 + 2\pi n N^{-1} C_1) C_2 \|T_n\|_{\varphi},$$
(5)

where C_1 is the same as in Lemma 1 and $C_2 = 2c \max(1, S_{\pi})$ for $S_{\pi} \ge \frac{1}{2}$, $C_2 = c(1 - S_{\pi})^{-1}$ for $0 \le S \le \frac{1}{2}$. In case of $\varphi(t, u)$ independent of t we have

$$||T_n||_{\varphi}^N \leq (1 + 2\pi n N^{-1}) ||T_n||_{\varphi}$$

Proof. We apply Lemma 1 to $S_n(\cdot) = T_n(x + \cdot)$ with fixed x, obtaining $||S_n \bar{x}||_{\varphi}^{(N)} \leq (1 + 2\pi n N^{-1}C_1) ||S_n||_{\varphi}$. However, due to the assumption (B_n) we have $||S_n||_{\varphi} \leq C_2 ||T_n||_{\varphi}$ (see [2, Theorem 1]), whence

$$\|S_n \bar{x}\|_{\varphi}^{(N)} \leq (1 + 2\pi n N^{-1} C_1) C_2 \|T_n\|_{\varphi},$$

$$\rho_{\varphi}^{(N)} \left(\frac{\delta S_n \bar{x}}{(1 + 2\pi n N^{-1} C_1) C_2 \|T_n\|_{\varphi}}\right) \leq \delta < 1 \quad \text{for} \quad 0 < \delta < 1.$$

Passing to the limit as $\delta \rightarrow 1$ and then taking supremum over x, we get

$$\rho_{\varphi}^{(N)}\left(\frac{T_{n}}{(1+2\pi nN^{-1}C_{1})C_{2}\|T_{n}\|_{\varphi}}\right) \leq 1,$$

which yields (5). If φ does not depend on t, we see easily that we may take $C_1 = C_2 = 1$.

Let us remark that if $\varphi(t, u)$ is independent of t, then obviously $\rho_{\varphi}(T_n) \leq \rho_{\varphi}^N(T_n)$, whence $||T_n||_{\varphi} \leq ||T_n||_{\varphi}^N$. This gives

COROLLARY. If φ is a convex φ -function (see [3, 1.9]) independent of the parameter and if $T_n \in H_n$, then

$$||T_n||_{\varphi} \leq ||T_n||_{\varphi}^N \leq (1 + 2\pi nN^{-1}) ||T_n||_{\varphi}.$$

If $\varphi(u) = |u|^p$, $p \ge 1$, the corollary gives exactly the Nikolskii inequalities in case of one variable.

4

We shall now assume φ to be a concave φ -function without parameter, strongly *s*-convex with an $s \in (0, 1)$, i.e., $\tilde{\varphi}(u) = \varphi(u^{1/s})$ is a convex function. Then for $T_n \in H_n$ we have

$$\rho_{\varphi}^{N}(T_{n}) = \frac{2\pi}{N} \sup_{x} \sum_{j=0}^{N-1} \varphi(|T_{n}(x+x_{j})|);$$

by $||T_n||_{\varphi}^{N,s}$ we denote the respective s-homogeneous norm in H_n (see [3, 1.5]). Besides $|| ||_{\varphi}^{N,s}$ we shall consider in H_n also the s-homogeneous norm $|| ||_{\varphi}^{s}$ induced in H_n by $L_{2\pi}^{\varphi}$ generated by φ . The following is easily calculated:

LEMMA 2. If $\tilde{\psi}$ is a convex φ -function and

$$K_{1,n}(t) = \left(\frac{\sin(1/2) nt}{n \sin(1/2) t}\right)^2 \quad \text{for} \quad 0 < t < 2\pi.$$

then for every C > 0,

$$\int_0^{2\pi} \widetilde{\psi}(CK_{1,n}(t)) \, dt \leq \frac{1}{2} \pi^3 \psi(4C\pi^{-2}) \, n^{-1}.$$

THEOREM 2. Let φ be a concave, strongly s-convex φ -function without parameter, $0 < s \leq 1$, satisfying the condition (Δ_2) : $\psi(u) = \sup_{v>0} \varphi(uv)/\varphi(v) < \infty$ for all u > 0. Let $\tilde{\psi}(u) = \psi(u^{(2r-1)/2})$, $u \ge 0$, with an integer $r \ge (s+2)/2s$. Then for every $T_n \in H_n$,

$$\rho_{\varphi}(T_n) \leqslant \rho_{\varphi}^{N}(T_n) \leqslant 2^r \tilde{\psi}(1 + 2\pi nN^{-1}) \rho_{\varphi}(T_n),$$
$$\|T_n\|_{\varphi}^{s} \leqslant \|T_n\|_{\varphi}^{N,s} \leqslant 2^r \tilde{\psi}(1 + 2\pi nN^{-1}) \|T_n\|_{\varphi}^{s}.$$

Proof. The left-hand side inequalities follow as in the remark to Theorem 1. To prove the right-hand ones, we denote $t_k^{(n)} = (2k+1)\pi/2n$ for k = 0, 1, ..., 2n-1. Then, applying Lemma 2 from [5, 1.7, p. 68], sub-additivity of φ and the definition of ψ , we obtain

$$\frac{2\pi}{N} \sum_{j=0}^{N-1} \varphi(|T_n(x+x_j)|) \\
\leq \frac{2\pi}{N} \sum_{j=0}^{N-1} \varphi\left\{\sum_{k=0}^{2^r n-1} |T_n(t_n^{(2^r-1_n)})| |K_{1,n}(x+x_j+t_k^{(2^r-1_n)})|^{(2r-1)/2}\right\} \\
\leq \sum_{k=0}^{2^r n-1} \varphi(|T_n(t_n^{(2^r-1_n)})|) \frac{2\pi}{N} \sum_{j=0}^{N-1} \psi(|K_{1,n}(x+x_j-t_k^{(2^r-1_n)})|^{(2r-1)/2})$$

Since $r \ge (s+2)/2s$, so $p = 2/(2r-1) \le 1$. Since φ is strongly s-convex, so is ψ ; hence ψ is also strongly p-convex, whence $\tilde{\psi}$ is convex. Moreover,

$$\frac{2\pi}{N}\sum_{j=0}^{N-1}\psi(|K_{1,n}(x+x_j-t_k^{(2^{r-1}n)})|^{(2r-1)/2}) \leq \rho_{\psi}^N(K_{1,n})$$

Hence

$$\frac{2\pi}{N}\sum_{j=0}^{N-1}\varphi(|T_n(x+x_j)|) \leq \rho_{\psi}^N(K_{1,n})\sum_{k=0}^{2^{\prime}n-1}\varphi(|T_n(t_k^{(2^{\prime-1}n)})|)$$

for every x. Now, let $\eta_j \in \langle x_j, x_{j+1} \rangle$ be as in the proof of Lemma 1 and let $\rho_{\varphi}^{(N)}(\bar{v})$ be as in 2, with $\tilde{\psi}$ in place of φ . Then $\rho_{\psi}^{(N)}(T_n\bar{\eta}) \leq \rho_{\psi}(T_n)$. Hence

$$\rho_{\bar{\psi}}^{(N)}(T_n \bar{x}) \leq \frac{1}{2} \rho_{\bar{\psi}}^{(N)}(2T_n \bar{x} - 2T_n \bar{\eta}) + \frac{1}{2} \rho_{\bar{\psi}}(2T_n).$$

Calculating as in the proof of Lemma 1 with d=1 and $u=\frac{1}{2}$ and applying Bernstein inequality, we obtain

$$\rho_{\Psi}^{(N)}(2T_n\bar{x}-2T_n\bar{\eta}) \leq \rho_{\Psi}(4\pi nN^{-1}T_n).$$

Hence

$$\rho_{\psi}^{(N)}(T_n\bar{x}) \leq \frac{1}{2}\rho_{\psi}(4\pi nN^{-1}T_n) + \frac{1}{2}\rho_{\psi}(2T_n).$$

Applying this inequality to $S_n(\cdot) = T_n(x + \cdot)$ with a fixed x, we obtain

$$\frac{2\pi}{N}\sum_{j=0}^{N-1}\tilde{\psi}(|T_n(x+x_j)|) \leq \frac{1}{2}\rho_{\tilde{\psi}}(4\pi nN^{-1}T_n) + \frac{1}{2}\rho_{\tilde{\psi}}(2T_n).$$

Taking supremum over all x, we get

$$\rho_{\psi}^{N}(T_{n}) \leq \frac{1}{2} \rho_{\psi}(4\pi n N^{-1}T_{n}) + \frac{1}{2} \rho_{\psi}(2T_{n})$$

for every $T_n \in H_n$. Now, we apply this inequality to $K_{1,n} \in H_n$ in place of T_n . By Lemma 2 and superadditivity of $\tilde{\psi}$, we thus obtain

$$\rho_{\psi}^{N}(K_{1,n}) \leqslant \frac{\pi^{3}}{4n} \left(\tilde{\psi}\left(\frac{16n}{N\pi}\right) + \tilde{\psi}\left(\frac{8}{\pi^{2}}\right) \right) \leqslant \frac{2\pi}{n} \tilde{\psi}\left(1 + \frac{2\pi n}{N}\right).$$

Consequently,

$$\frac{2\pi}{N}\sum_{j=0}^{N-1}\varphi(|T_n(x+x_j)|) \leq \frac{2\pi}{n}\widetilde{\psi}\left(1+\frac{2\pi n}{N}\right)\sum_{k=0}^{2^{\prime}n-1}\varphi(|T_n(t_k^{(2^{\prime}-1_n)})|).$$

Taking supremum over all x, we obtain

$$\rho_{\varphi}^{N}(T_{n}) \leq 2^{r} \tilde{\psi}\left(1 + \frac{2\pi n}{N}\right) \frac{2\pi}{2^{r} n} \sum_{k=0}^{2^{r} n-1} \varphi(|T_{n}(t_{k}^{(2^{r}-1_{n})})|)$$

Writing $S_n(\cdot) = T_n(x + \cdot)$ for an arbitrary x, we have obviously $\rho_{\varphi}^N(S_n) = \rho_{\varphi}^N(T_n)$. Hence, applying the above inequality to S_n in place of T_n , we get

$$\rho_{\varphi}^{N}(T_{n}) = \rho_{\varphi}^{N}(S_{n}) \leq 2^{r} \widetilde{\psi}\left(1 + \frac{2\pi n}{N}\right) \frac{2\pi}{2^{r} n} \sum_{k=0}^{2^{r} n-1} \phi(|T_{n}(x + t_{k}^{(2^{r}-1n)})|).$$

Integrating both sides over $\langle 0, 2\pi \rangle$, we obtain

 $2\pi\rho_{\omega}^{N}(T_{n}) \leq 2^{r+1}\tilde{\psi}(1+2\pi nN^{-1})\rho_{\omega}(T_{n}),$

which is the first of the required inequalities. The second inequality follows easily from the first one.

Let us remark that taking $\varphi(u) = |u|^p$, 0 , Theorem 2 yields the inequalities of Oswald [5, 3.4, p. 71].

5

THEOREM 3. Let φ be a concave, s-convex function (see [3, 1.9.1]) depending on the parameter, satisfying (\mathbf{B}_{π}) and the condition (Δ_2) : $\psi(t, u) = \sup_{v>0} \varphi(t, uv)/\varphi(t, v) < \infty$ for all $u \ge 0$ and $t \in \langle 0, 2\pi \rangle$. Then there exists a C > 0 such that for every $T_n \in H_n$ there holds

$$||T_n^v||_{\omega}^s \leq C^s n^{sv} ||T_n||_{\omega}^s$$
 for $v = 0, 1, 2, ..., v$

Proof. Obviously, it is sufficient to perform the proof for v = 1. Since φ is s-convex, so are ψ and $\overline{\psi}(u) = \sup_{0 \le t \le 2\pi} \psi(t, u)$, $\overline{\psi}(1) = 1$. Choosing a fixed positive integer r such that 2rs > 1, we thus obtain

$$\sum_{k=0}^{\infty} \bar{\psi}\left(\frac{1}{(2k+1)^{2r}}\right) \leqslant \sum_{k=1}^{\infty} \frac{1}{(2k+1)^{2rs}} \bar{\psi}(1) < \infty.$$
(6)

Taking t_k^n as in the proof of Theorem 2 and applying the inequality

$$|T'_n(x)| \leq \sum_{k=0}^{2^{\prime n}-1} \frac{2^{\prime n}}{4n^{2\prime}} |T_n(x+t_k^{(2^{\prime}-1_n)})| (\sin \frac{1}{2} t_k^{(2^{\prime}-1_n)})^{-2\prime}$$

(see [5, p. 69]), subadditivity of φ and inequality (6) give for every $\lambda > 0$,

$$\rho_{\varphi}(\lambda T'_{n}) \leq 2 \sum_{k=0}^{\infty} \psi\left(\frac{1}{(2k+1)^{2rs}}\right) \rho_{\varphi}(\lambda^{2r^{2}+r-2}nT_{n}(\cdot+t_{k}^{(2r^{-1}n)})).$$
(7)

Now, by [2, Theorem 1], we have

$$\|\lambda 2^{2r^2+r-2}nT_n(\cdot+t_k^{(2^{r-1}n)})\|_{\varphi}^s \leq C_2\lambda^s 2^{(2r^2+r-2)s}n^s \|T_n\|_{\varphi}^s,$$

where C_2 is as in Theorem 1. Choosing

$$\lambda = \left\{ 2^{2r^2 + r - 2} n C_2^{1/s} (\|T_n\|_{\varphi}^s)^{1/s} \right\}^{-1}, \tag{8}$$

the left-hand side of the last inequality becomes ≤ 1 and so, by (7), we obtain

$$\rho_{\varphi}(\lambda T'_{n}) \leq 2 \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2rs}}.$$

If C_3 is the maximum of 1 and of the right-hand side of the last inequality, we get $\rho_{\varphi}(\lambda T'_n) \leq C_3$, $C_3 \geq 1$. By s-convexity of φ , $\rho_{\varphi}(\lambda C_3^{-1/s}T'_n) \leq 1$. Hence $\|T'_n\|_{\varphi}^s \leq \lambda^{-s}C_3 = Cn^s \|T_n\|_{\varphi}^s$, where $C = 2^{(2r^2 + r - 2)s}C_2C_3$.

Let us remark that taking $\varphi(u) = |u|^p$, 0 , we obtain the Bernstein-type inequality of Oswald [5, 2.2, p. 70].

Theorems 2 and 3 may be applied to estimate the averaged moduli of smoothness in $L_{2\pi}^{\varphi}$ by means of best one-sided approximations by trigonometric polynomials in $L_{2\pi}^{\varphi}$.

REFERENCES

- 1. H. MUSIELAK, On the τ -modulus of smoothness in generalized Orlicz spaces, *Comm. Math.*, in press.
- H. MUSIELAK, On some inequalities in spaces of integrable functions, in "Proc. Int. Conf. Constructive Function Theory, Varna," 28 May-1 June 1984, Sofia 1984, 629-633.
- 3. J. MUSIELAK, Orlicz spaces and modular spaces, Lecture Notes in Math. Vol. 1034, Springer-Verlag, Berlin/New York, 1983.
- S. M. NIKOLSKIĬ, Inequalities for entire functions of finite type and their applications in the theory of differentiable functions of several variables, *Trudy Mat. Inst. Steklova* 38(1951), 244-278. [Russian]
- 5. P. OSWALD, Some inequalities for trigonometric polynomials in L_p -matric, 0 , Izv. Vyssh Uchebn. Zaved. Mat. 7 (1976), 65-75. [Russian]