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Inequalities or Nikolskii (Trudy Mat. Inst. Steklova 38 (1951),2.3, p. 255) in Lfn'
p~ 1, and or Oswald (Izv. Vyssh. Uchebn. Zaved. Mat. 7 (1976), (3.4), p.71;
Theorem 1, p. 69),0 < p < 1, are extended to the case or Orlicz spaces Lrn' 1987
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1

Let cp: <0, 2n) x R + -+ R + be a function of class </> (see [3, 7.1 J),
generating the generalized Orlicz space Lirr and convex with respect to the
second variable and let us extend cp to R x R + 2n-periodically. The
function cp is said to satisfy the condition (A), if there is a set AO c R,
mes A°= 0, and numbers c> 0, M>° and a measurable function
F1:(R\AO)x(R\AO)-+R+ such that cp(x,u)~cp(t,CU)+Fl(t,X) for all
u ~ 0, t, x E R\AO, and HQ FI(t, x) dt dx ~ M mes Q for every square Q in
<0, 2n) x <0, 2n). The function cp is said to satisfy the condition (B~) with
an 1] > 0, if there exist a set A c <0, 2n), mes A = 0, a constant c > 0, and a
nonnegative, 2n-periodic, measurable function F(', h) on R for Ihl ~ 1],

satisfying the inequality S~ = SUPlhl q nrr F(t, h) dt < CXl such that
cp(t-h,u)~cp(t,cu)+F(t,h)foru~O,tE<0,2n)\A (see [IJ). It is easily
seen that if cp satisfies Brr , then it satisfies also (B~) for any 1] > n with the
same set A, constant c and S~ = Srr' Obviously, if cp(t, u) is independent of
the parameter t, it satisfies both (A) and (B~) for all '1 > 0.

2

The following notation will be adopted. Taking a positive integer N fixed
and xj =2njN- I forj=O, 1, ...,N-l, we write for any N-dimensional real
vector ii = Vo,.. ·, V N - I'
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This IS a convex modular in R''i, and the Luxemburg norm !! II
generated by this modular ([ 3, 1.5]) will be further denoted by II Ii <J'

Let Til be a trigonometric polynomial of degree ~ n, and let vERN,
Til V= (TII(v o),"" TII(v N I))' Thus, p:;'i)(Tllv) defines a convex pseudo­
modular in the space H II of all trigonometric polynomials of degree ~ n,
generating a pseudonorm II Til vii ~'i), v being fixed. We define in H II also
another convex modular

\/ ,v I ''''XI.~ I

p;p(TII)=sup I J. cp(t,ITII(x+:x)I)dt,
\. i -- 0 .\/

defining in HII the Luxemburg norm II II; = II II p,~.

3

The purpose of the first part of this note is to estimate the pseudonorm
II Tw\'11 ~;'i) with .\' = X o,"" X N I and the norm II Til II ;, by means of the
Luxemburg norm II TIILp of Til in the generalized Orlicz space L~",

generated by the modular p(f) = j6" cp(t, If(t)I) dt.

LEMMA 1. Let (p he a convex function of the class C/J, satisfying (A) and
(B rr ), and let Til E HI/" Then there holds

(1)

where C j = 2ec max( 1, Srr + 2nM). In case oj" cp(t, u) independent of the
parameter t,

(2)

Proal Let I7 j E<Xi ,X/+ 1 ) be chosen so that IT II (l7i) I=
min",;;,,;;x,,,ITI1 (t)I, fi=170, ...,I7N-I' Then p;(u IT,Ji)~p<J'(u I Til) for
every u > 0, whence II Til fi II ~'i) ~ II TIIII,p' Hence

IITwxll~;'i)~ II Twx- Tllfill;;"I+ IITllfill~'i)~ IITI1 .\'- Tnfill~N)+ II Tnll<J" (3)

Let u > °and d? 1 be arbitrary. Then

P~p'i) (TII.X - Tllfi) ~ ~ "II j I"I I cp {t) r- I

I T~(s)1 dS} dt.
du d i~O'; u';

Now, by Jensen's inequality with a fixed t and by condition (A), we obtain

{
I IX, I , } NIx;, , {2ne }

cp t,;" IT~(s)lds ~2n x; cp s'NuIT~(s)1 ds

NIx;"+- F(s,t)ds.
2n x;
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Now, under the assumption (B,,) there holds the following Bernstein
inequality: P'P(n-lT;,)~P'P(cT")+S,, (see [1, Proposition 2]). Hence we
obtain easily

where C=S,,+2nM. Now let d=max(l, C). Then

(4)

From this inequality follows that if u> 2nccnN - I, then the left-hand side
of the inequality (4) is ~ 1. Hence

From this and from (3) follows (1). If <p does not depend on t, we have
M=S,,=O, c=c=d= 1, and we get (2).

THEOREM 1. Let <p be a convex function of the class cP, satisfying (A)
and (B,,), and let T" E Hw Then

(5)

where C 1 is the same as in Lemma 1 and Cz =2cmax(I,S,,) for S,,~~,

Cz = c(l - S,,) - I for °~ S ~~. In case of <p( t, u) independent of t we have

Proof We apply Lemma 1 to S,,(·) = T,,(x +.) with fixed x, obtaining
IIS"xll~N)~(l +2nnN- 1Cd IIS"II'P. However, due to the assumption (B,,)
we have IIS"II'P~CzIIT"II'P (see [2, Theorem 1]), whence

IIS"xll~N) ~ (1 + 2nnN- IC I) Cz II T"II'P'

IN) ( [)S"x ) ~ [) < 1 for °< [) < 1.
P,p (1 +2nnN- I C I ) CzIIT"II'P '"

Passing to the limit as [) --> 1 and then taking supremum over x, we get

which yields (5). If <p does not depend on t, we see easily that we may take
C I =CZ =1.
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Let us remark that if cp(t, u) is independent of t, then obviously
P<p( Til) ~ p~( Til), whence II Til II <p ~ II Til II ~. This gives

COROLLARY. lfcp is a convex (p~fimction (see [3, 1.9]) independent oj the
parameter and ij Tn E H,,, then

If cp(u) = lui P, p ~ 1, the corollary gives exactly the Nikolski! inequalities
in case of one variable.

4

We shall now assume cp to be a concave cp-function without parameter,
strongly s-convex with an .I' E (0, 1>, i.e., <j)( u) = cp( U 1/1) is a convex function.
Then for Til E H Il we have

2n N - 1

p~(Tn)= N SUPL cp(ITn(x+xJI);
, /=0

by II Tnll ~.\ we denote the respective s-homogeneous norm in H n (see [3,
1.5]). Besides II II ~.s we shall consider in H n also the s-homogeneous norm
II II ~ induced in H n by L'frr generated by cp. The following is easily
calculated:

LEMMA 2. fflji is a convex cp-function and

(
sin(l/2) nt)2

K1.n(t) = n sin(I/2)t

then for every C> 0,

for 0 < t < 2n,

THEOREM 2. Let cp be a concave, strongly s-convex cp~unction without
parameter, 0 < .I' ~ 1, satisfying the condition (Ll 2 ): ljJ(u) =
sUPv> 0 cp(uv)/cp(v) < 00 for all u>O. Let lji(u)=ljJ(u(2r-1l/2), u~O, with an
integer r ~ (.I' + 2 )/2.1'. Then for every Til E Hn,

P<p( Tn) ~ p~( Tn) ~ YIji(1 + 2nnN 1) P<p( Tn),

IITIlII~~ IITIlII~·s~YIji(l +2nnN I) IITnll~.
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Proof The left-hand side inequalities follow as in the remark to
Theorem 1. To prove the right-hand ones, we denote fLn) = (2k + 1) n/2n for
k = 0,1, ..., 2n - 1. Then, applying Lemma 2 from [5, 1.7, p.68], sub­
additivity of cp and the definition of 1jJ, we obtain

Since r~ (s + 2 )/2s, so p = 2/(2r - 1) ~ t. Since cp is strongly s-convex, so is
1jJ; hence IjJ is also strongly p-convex, whence lfI is convex. Moreover,

2n N-j

-" '/'(IK (x+x.. _t(2,-ln))1(2r-l)/2):>:::p':i(K )N 1... 'I' I." • I k '" of I,,,'
I~O

Hence

for every x. Now, let 1]j E <xi' X j + I >be as in the proof of Lemma t and let
p~N)(V) be as in 2, with lfI in place of cp. Then p~N)(T"ij)~Pof(Tn)'Hence

p'f)(Tnx) ~ 1P~N)(2T"x- 2Tnij) +1P./i(2Tn).

Calculating as in the proof of Lemma 1 with d = t and u = 1and applying
Bernstein inequality, we obtain

Hence

Applying this inequality to S,,(')= Tn(x+') with a fixed x, we obtain
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for every Tn E HIl" Now, we apply this inequality to K I.n E Hn in place of Tn.
By Lemma 2 and superadditivity of li/, we thus obtain

Taking supremum over all x, we obtain

_ ( 2Jrn) 2Jr 2'n I

p;(Tn):'( 2't/J 1+N 2'n k~O cp(1 Tn (t l/' 1
n ))I).

Writing Sn(') = Tn(x + .) for an arbitrary x, we have obviously
p;(Sn) = p;(Tn). Hence, applying the above inequality to Sn in place of Tn,
we get

p:~(Tn) = p;~(Sn):'( 2'li/ (1 + 2~n) ;': 2~~OI cp(1 Tn(x + ti2' /"))1).

Integrating both sides over <0, 2Jr), we obtain

2Jrp:~(Tn):'( 2' f- lli/( 1+ 2JrnN I) p",( T,,),

which is the first of the required inequalities. The second inequality follows
easily from the first one.

Let us remark that taking cp( u) = lui P, °< P < 1, Theorem 2 yields the
inequalities of Oswald [5, 3.4, p. 71].

5

THEOREM 3. Let cp be a concave, s-convex function (see [3, 1.9.1 J)
depending on the parameter, satisfying (B n ) and the condition (L1 2):
t/J(t,u)=suP'>Ocp(t, uv)/cp(t, v)<OC; for all u~o and tE<0,2Jr). Then
there exists a c>°such that for every Tn E Hn there holds

for v = 0, 1, 2, ....

Proof Obviously, it is sufficient to perform the proof for v = 1. Since cp
is s-convex, so are t/J and tlI(u)=sUPO~I~2nt/J(t, u), t/!(l)= 1. Choosing a
fixed positive integer r such that 2rs> 1, we thus obtain

k~0 tlI ( (2k ~ 1)2r) :'( k~ 1 (2k ~ 1)2rs tlI(1) < Cf).
(6 )
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Taking l'k as in the proof of Theorem 2 and applying the inequality
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(see [5, p. 69J), subadditivity of cp and inequality (6) give for every A>O,

P ( ).T')~2 ~ .1:( 1 )p (A 2r'+r-2nT('+/(2'-'n))) (7)
q> n '" L. 'I' (2k + 1)2rs q> n k .

k~O

Now, by [2, Theorem t J, we have

IIU2r2 + r- 2nTn(. + If' "n})II~ ~ C2 A'2(2r2
+ r·· 2\'n' II Tnll~,

where C2 is as in Theorem 1. Choosing

(8)

the left-hand side of the last inequality becomes ~ t and so, by (7), we
obtain

If C3 is the maximum of t and of the right-hand side of the last inequality,
we get Pq>().T;,) ~ C3 , C3 ~ 1. By s-convexity of cp, Pq>(AC31!sT~) ~ 1. Hence

li T' Ils~; ."''C = Cn' liT lis where C=2(2r2 +r-2)sc C
11 cp -....::" ~ 3 17 <.p' 2 3·

Let us remark that taking cp(u) = lui P, 0< p < 1, we obtain the
Bernstein-type inequality of Oswald [5, 2.2, p.70].

Theorems 2 and 3 may be applied to estimate the averaged moduli of
smoothness in L'f" by means of best one-sided approximations by
trigonometric polynomials in L'f".
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